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Abstract

This technical note presents a review of the functional forms commonly used
to represent demand and production in Computable General Equilibrium
(CGE) models. The general properties of demand and production functions
are described. The note also includes the detailed derivation of some specific
functions.



1 Demand functions

1.1 Generalities
Demand functions

Marshallian demand functions
Marshallian demand functions are derived from the maximization of direct
utility U (¢i, ..., ¢,) under budget constraint:

{ max U (q1, -+, Gn)
s.t. lezqz =R
where ¢; and p; represent the demand and price respectively of good i, R
is the household’s income, and U (g, ..., q,) is the utility function. These
demands are also called uncompensated, as opposed to the compensated
Hicksian demand functions described bellow.
Marshallian demands are thus functions of prices and income: ¢; (p1, p2, .-, Pn, R)-
From this we can find the indirect utility function V (py, ..., p,, R) which
corresponds to the utility level obtained for a given income and set of prices.

V (pla '-'7pn7R) = U(Ql» 7Qn) = U(ql (pla <ovy Pny R) y o3 Qn (pl» oey Pny R))

Hicksian demand functions
Hicksian demand functions are derived from the minimization of expenditure
under a utility constraint:

min ZipiqZH
stU(q1y ., qn) = u

Hicksian demands are also called compensated, since the utility level is held

contant. They are thus functions of prices and utility: ¢ (p1, pa, ..., pn, 1).
From this we can find the expenditure function e which gives the minimum

budget required to obtain a given utility level for a given set of prices.

€ (pla "'7pn7u) - szqu (plﬂ "'7pn7u)

It is also worth noting that:

qu (p17p27 ooy Py V (Pl» ey Pny R)) =4q; (plap27 ooy Py R)

In the same way:

q; (p17p27 <oy Pn,y € (plv 7pn7u)) - qu (p17p27 "'Jpn7u>



Elasticities

Uncompensated price elasticities
The uncompensated price elasticities measure the evolution of demand with
prices, the level of income being constant.

The own price elasticity measures the evolution of one good’s demand
with its own price:

_ aqi}&

i qi

The cross price elasticity measures the evolution of one good’s demand
with the price of another good:

€

_ 94ip;

€ =
Y (929;' q;

Income elasticities
The income elasticity measures the evolution of demand with income:

_OuR
"= R

Compensated price elasticities
The compensated (Hicksian) price elasticities measure the evolution of de-
mand with prices, the level of utility being constant.

Own price elasticity:

" Opi gl
Cross price elasiticity:
Y Opqff
The Allen substitution elasticity is defined as:
H
€
Uz‘j = A
wj
Where w; is the budget share of good j, that is, w; = %

4



Useful identities

Slutsky equation

The Slutsky equation decomposes the (uncompensated) price effect into two
components: a substitution effect and an income effect. Namely, if the price
of good j increases, the real income of the consumer decreases which induces
a decrease in the demand for good i (income effect for normal goods), but
as the price of good 7 relative to the price of good j decreases, the decrease
in demand for good ¢ may be attenuated (substitution effect for substituable
goods). We thus have:

6..

_ H _ v
€ij = €ij — w;n; = 05 = U)_ +771

J

Shephard’s lemma

The Shephard’s lemma states that the demand for a particular good ¢ for a
given level of utility v and given prices p, equals the partial derivative of the
expenditure function with respect to the price of the good:

e (p,u)
H _ )

This is easliy demonstrated by differentiating both sides of the equality:

€ (pla "'7pn>u) = szqu (pla '-'>pn7u)

Roy’s identity
The Roy’s identity relates the Marshallian demand function to the partial
derivatives of the indirect utility function:

oV (p,R)

_ op;
q; (p7 R) - 8V (p,R)

OR

1.2 Cobb-Douglas

Demand function

The Cobb-Douglas demand function is derived from the following utility max-
imization program:



{ max U = [, ¢}’
st.>;pig =R

L= Hq?j —A (ijqj —R)
J J

a; [T g%
oc _,_llg o,
Jg; 4i

oL
azozgijj_R

a; 1. &
)\ = M’W
bigq;
o;piq; . .
= pig; = #N%J
Piq;
R=> pjg; = 72%‘
j g
ROéi
= q; =
Di
Elasticities
_ Ogipi  Roipi  @ipi
€ = - N -1
op; q; p; 4 Di Qi
dq; pj
€, = ——= = Vi )
! 3pj qi 7
N aqz‘R_OéiR o; Rp;

=1

= 53@ B E%’ B pi o R

€5
Uz’j:_{‘“m’:l

Wy



1.3 Constant Elasticity of Substitution
Demand function

The Constant Elasticity of Substitution (CES) demand function is derived
from the following utility maximization program:




Elasticities

o Ogipi i —afRop{™' 32, afp; 7 —a’R(1-0) | ot af (0 —1)
T o - ] 2 - o—1 o..1l—0
Opidi (pé' > a?ﬁ}‘”) i 2505
e = Q9iPi (o )Py
Y Opai R’
o Quf__or R,
CORa pryafm T g
€5
Uij=j+n¢=(0—l)+lzo
j
Where the second equation follows from noting that w; = Z% = %I#(jpi_o =
1—0o
a;p; .
Ek akpi_”’v‘]‘

1.4 Linear Expenditure System-Cobb Douglas

Demand function

The Linear Expenditure System (LES)- Cobb-Douglas demand function is
derived from the Stone-Geary utility maximization program:

max U =[], (¢ — gmin;)™

With > . a; =1 ; gmin; being the minimal consumption quantities.

L= H (g — qming)™ — A (Z PiGi — R)




o .
\ = L (q; — qmin;)™, Vi
pi (@i — qminy) H ! !

Q;Pi

= q; = gmin; + (q; — qmin;) Vi, j

iPj

R = ijqj = ijqmmj + (qi — gmin;) % Z Q;
j j '

J

. Q .
= q; = qgmin; + » (R — ;qummJ)

Elasticities
e ] (> RE e B
_Ogi R R

i = — =
OR g; Diq;

Uij:@w:%(l_m)

w]- w; q]'

1.5 Linear Expenditure System - Constant Elasticity
of Substitution

Demand function

The LES-CES demand function is derived from the following utility maxi-
mization program:

1 o— o—1
max U = (Zl af (g — qmz’ni)Tl> 1
s.t. Zz Diq; = R



Di r
= q; = qmin; + jpfj (¢ — qgmin;) , i,
Qip;
R= - : PN
=Y pja; =Y pjamin; + (¢ — gmin,) - > -
J i i j p]
_ Q; (R -2 quminj>
= q; = qnun; —
jud Zj O‘jpjl'
Elasticities
aip; 7 <R -2 qumz’nj> .
GE TN gl (GO — ¢; + gmin;
G 2.5 5P pi
by (g — o (g — gminy)) ;
’ Gpd > akpy, © T
0q; 1} R (g — gmin;)
=45 =
OR g G (R = Zj qummj>
oowy ¢:q; (R — D25 prgminy,)
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1.6 Almost Ideal Demand System
Demand function

The Almost Ideal Demand System (AIDS), proposed by Deaton and Muell-
bauer (1980) is a flexible functional is the sense that it has enough parameters
to be regarded as a reasonable approximation to whatever the true unknown
function might be.

The consumers’ preferences on which the AIDS is based, are assumed to
belong to the Price Independant Generalized linear Log (PIGLOG) class of
preferences and are represented via the expenditure function:

1
In (e (p,u)) = O‘0+§k:ak 1Hpk+§ ;ZV*M In py, In p; +ufo E[pf’“ (1)
J

Where > . a; =1, Zj Vg = Z]‘ ik = Zj Bj=0

As e(p,u) =Y, pigi, we know that %ﬁ;") = ¢;, which leads to:

pide (p,u)  pigi 5
e(p,u)dp;  e(p,u)
Recognizing that w; = 29 and that 22w — depw) ging equality

e(p,u) e(p,u)Op; 9Inp;
(2) and logarithmic differentiation of (1) leads to:

w; = oy + Z Yij Inpj + Biufy Hpkk
J k

With v;; = 5 (v +7%5:)
Furthermore, (1) implies that:

1
In (e (p,u)) = ao + Zk:ak Inpy + 5 Zk: D e npiInp; o+ ufo E[pf’“
J

1
= uy prk =In(e(p,u)— (040 + Zak Inpi + B Z Z’Y*kj In py hlpj)
k k E o J

The AIDS is thus expressed as:

Diq; R
w; = R = + zj:%jlnpj -l-ﬁlln (ﬁ)

Wlth ’7ij = ’}/ji, ZZ o; = 1, Zz/Bl = O and Zj ’7ij = 0
And P a price index such that: In P = ap+), ax lnpk+% ok Zj Yie; Inpg Inp;
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Elasticities

9q; i Vi Bi
€ = op; 4 = —1+E T Oéi+27ji1flpj

., ” B, R

W WW;  WW; P

1.7 Linearized Almost Ideal Demand System

Demand function

In this linearized version of the AIDS, the non linear price index P is replaced
by the Stone’s price index P* to ease the empirical use of the model. The
equation definig this index P* is given by:

In P* = Zwklnpk
k

The demand is thus equal to:

7

¢ =— (ai+2%jlnpj+ﬂi (mR_Z%lnpj))
; j

R i iQi
=q = ]7 (ai—i-Z%jlnpj—i—ﬁi (lnR—Zl%lnpj —%ln%))
’ J

J#

R 0
= (q; = (Oxi—FZ%jlnpj +ﬂz (th— Z%ln@))

(1+ B;Inp;) pi r o
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Elasticities

dgipi 1+ Bilnp; + 5 1 (’Yu ﬁz‘ ( anpz 4P; 4, ))
- Dj

T a1+ Bnp 1+ Binp \w  w \40pq; R
1 Bz
R T : Jw; Inp;
= € +1+6ilnpi< Bi + 0, w (;q w; np])>

Z 7 ]

aQ‘pj 1
o w; (1 + B Inp;) Vi = i wiInp; J Z kj W 1N Py

Ipj 4 k#i
w;f; Inp; 1 Yij  Biw; Bi
i = —_— = + zln 1€4j wy, In pre;
= G wi(1+ﬁilnpi)+1+5ilnpi w; w; pilnpicis = lzk: s

ij i W i
= e = h — & — g (wj Inp; + Zwk hlpk%j)

k

dq; R Bi
= —=—=1 1 -1
TRy~ w0t Ainp) ( ;w” s (1 )>

= (n; — 1) (1 + BiInp;) w; = Bi+Baw; np; (n; — @ijlnp] —1)

= = 1+& <1+1nP* anwy lnp]>

J

gij = %jtm — 1y b w;Inp; —w;ln P* + Z (wg In prex; + wnpwy Inpy)
wj w;w; W w; .

=05 =1+ v _ B (ln% +Zakjwklnpk>
k

w;W; Ww;
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1.8 Normalized Quadratic Expenditure System
Demand function

We start from the normalized quadratic expenditure function:

1D > BikDibk
e(p,u) = a;p; + ( bipj + 5= U
; ZJ: 2 X5p;

With 5;; = B;i

As e(p,u) = R, the indirect utility function can be expressed as:
(R 2 “jpj>

(5, byp, + 1T

2. Q5p;

Vip,R) =

Furthermore, applying Shephard’s lemma, allows us to find the Hicksian
demand function:

DBy 1Y, 3, Birps
86(;]7;.10) — a; + bz + %:]Z;jﬁ] . 5 Z] Zk} /Bjk[;jpk
b 3 iPi (Z] ajPJ)

Replacing u with the expression for V' (p, R) in this equation, we find the
Marsallian demand function:

o . L 2iPiBi 120 30 Bikpjipk
(R 2 a]p]> (bz+ X 2 (X am5) )

1225 2k BikPiPk
<Zj bipi +3 JZ]’ a;p; )

" (p,u) =

q; (pvR) = q; +

Elasticities

> Bijp; 108> 2k BikPiPk
a; bz + z — — 5 -
_Oqpi _pi| ( ik 2 (T am) )

B op; qi i 12252k BikPiPk
bid ¢ Zjb]p]+2 JZjaij

g oy Bijpj aZ 3. >0, Bikpipk
R_ Qs ) Bii _ 2 g mvIrd % J k PjkFj
( ZJ iPi (Zjajpj (25 a5p5)” (35 a5ps)”

1225 2k Bjkpipk
ZJ bﬂp] + 2 ]Zjajpj

%

+

. (qi — ai)Z
R— Zj @;Dj
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i X, Bijpi | F X5 2k BikPiPk
pi (R -2 ajpj) (ﬁii — 25 Tt & )

e = — }? (¢ — a;) n (2, aﬂ’j)Q
=2 5P i <Zj a;p; > bip 532,07 Bjkpjpk>
oo Oupi _ pie (4 @)
Y Opy g ¢ (R — Y, arpr)
4 — 2k (O‘j'gi’“"‘aiﬁj’“)pk Qi 3 >0 Briprp
. Dj (R Zk (Ikpk) (ﬁz] S oRE + (Zk Oékpk)2
@ () kb Yoy btk + 3 320 >0, Bupipt)
> Bijps 1% 25 >k Bjkpipk
R( 0+ Zalup 1002
0¢; R ( TS e T2 (2, ep;) )
OR q; . L 225 2k Bwpape
0 e (o 1S
R(q; — a;
= (¢ — ai)
gi (R -2 ajpj)
. 2 (iBirtaiBin)pk | aioy 30 3, Bupkpi
i . R (R Zk Clkpk) <5m S okPh + (Ek akpk)Q
Oij = — 11 =
7wy @idj (5 b 2oy il + 5 i > Bubibt)
Normalization

A normalization of the NQES parameters is needed in order to avoid indeter-
minancy problems in their estimation (see Diewert and Fox, 2009). Namely,
for a set of reference prices p*;:

Z Bijp"; =0
J
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Z a;p*;, =0

If, as usual in CGE modelling, the reference prices are set to 1, which
eases the calibration of parameters.
Indeed, in that case, at initial point we have:

¢ = a; + Rb;

R

€& =—bj+ ———
inj&j

q; (Qi - ai) + Rﬁij

€ = —
Y R qi Zk Qg
Rb;
N =
q;
oo By
Y qiq; Zk (673

1.9 An Implicit Direct Additive Demand System
Demand function

Here we start from an implicit directly additive utility function (see Hanoch
(1975) for more detail on implicit additive utility functions):

o + Bie", (g — gman;
Z In =1
- 1+ ev Aet

Where gmin; represents the minimal possible consumption level of good 1,
and A, «;, ; are parameters, with a; >0, >, a; =1, f; <l and ) 5 =1.

The AIDADS (An Implicit Direct Additive Demand System) is derived
from the maximization of utility u, subject to its implicit additivity and to
a budget constraint:

16



maxu

o+ Bie® —qmin; __
st.) In% Tt =1
sty .=1

o o + pie", ¢ —qming ) B
L=u A(Z el 1) g(Z R)

Ppigqi

) _ aitpBie"
Let’s define ¢z = Tlger

u ;. (q; —qmin;\ i _
= 0q; Z ( ou n ( Aev o )+ (q; — qmin,) =0
J

We thus have:

oL ou ou

oy~ V= aqi—ﬁpi$@—§P¢
And:

ou i

a_(li - (¢ — gmin,) Zj <% In <%:ij> a ¢]>

From the two previous equalities we have:

o o v

pi(a; = aming) 2 (52 1n (45mm ) — o)
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¢jpi (Qi - qmmi) Vi, j
OiDj

= q; = qgmin; +

—~=0=> pjg;—R
i

pi (¢ — gmin,)
O

= R = ijqmmj +
J

O (R - qumz'nj) (cv; + Bi€™) <R - quminj>

= q; = gmin;+ = gmin;+
pi pi (1+ev)

We can also derive the the Hicksian AIDADS (An Implicit Direct Additive
Demand System) from the minimization of expenditure, subject the utility
constraint:

{ min) =R

o+ Bie® —qmin; __
st.) T In & St =1

= Sopia+ (G n (15 1)
= Supigi A (0o (g — 1)

aﬁ:Ozpi—l-)\( O )
0g; qi — Vi

Pi¢; (¢ — qminy)
P;Pi

_0—Z¢] < Aqezum) 1

= q; =

+ gmin;, Vi, j

:>Z¢Jln(ij)+l ((bAe):l—ln(qi—qmini)

O by %
= ¢, = qmin; + Ae*™ (—> 11 (—J)
Di ; ®;
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Elasticities

_ouR _R1 (90
Yet
99;  0¢; du g
OR ~ Ou (Z J0q; OR

. LU
As ¢; = O‘ﬁiﬁf , we have:

9¢i _ (Bi —ai)e"
ou (14 ev)?

So:

Bi — ) e” ou 0g;
i = EP T i
LYY (( Zp]qmm] (1+en)? ( — 4 8R>> ¢>

And, as we have seen:

ou B Gi

% (= qming) 5, (G (25 - )

N ou Di
d4; (R -2 qumi”j) <(1f%)z >; ((B; — a;) In(g; — gminy)) — 1)

So, we have:

e o (R~ maminy) S5 T, )
api (R = X2 piaming ) (i 25 (8 = ag) I g; — qminy)) — 1)

Furthermore, as R = Z P, Z Disp 941 — 1
Then:
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1 ( ( Bi — >>
= — ¢Z - . 1+ev 2
w; Zj ((Bj — aj) In (g; — gminy)) — ( et :

We also have:

aqH' Di Di 1 ( ) ( ) <¢z) (p‘)d)j
EHZ. e S — Aett! A ut1 [ Pi P
dpi ¢, qH, pz 1?[ i i 1;[ ¢,

(¢"; — qmin;) pi (¢"; — qmin;)
qu - (¢1 - 1) wiR

) Pk
EHz'j _ 8QHZ ]2 — H <¢Z¢J) A u+1¢j H (%) ,VZ 7&]

Ip; ¢ q pi Pi

¢wp; (g5 — gmin,)

== Vi FE g

Therefore:

_ ey _ di (pilg; — qminy)
w; U}ZR w;

And from Slutsky’s equation,

€ij = O4Wj — 1iW;

Sipjqmin; | w; (Bi — i)

= € = — (1+ev)?
w; R w; <Zg ((Bj — aj) In (g; — gmin;)) — (H;i : >

1.10 Degrees of freedom
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Demand system | Parameters | Restrictions Degrees of
on parameters freedom
Cobb-Douglas | a; =1 n—1
LES-CES a;, o Soair =1 2n
qmin;
AIDS o, O, Yua=1,%.6=0 2n —1
Bis Vij 2% =0, vij = Vi + e
NQES a;, o i, =1,>a;p*,=0|3n—2
bi, ﬁij Z]‘ Bijp*j =0, Bij = ﬁji +@
«o; = tnitialshare
AIDADS o, B Yua=1,>.06=1 3n—2
o, gmin; 0<a; B <1
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2 Production functions

2.1 Generalities

Producers’ decisions can be derived from the maximization of profit (primal
program) or from the minimization of production costs (dual problem). Both
programs lead to the same results in terms of factor demands, of production,
and thus of profit.

Primal program

In the primal program, the optimal production is determined by maximizing
the producer’s profit 7 (Y, z1..., x,) under technology constraints:

max 7 (Y, z1...,z,) = PY — ) w;z;
stY = f(xy...,xp)

Y is the quantity produced, P the market price of the product, and z; and
w; respectively the quantity and price of factors used to produce.

Dual program

Here the producer minimizes his cost to produce a given level quantity
Y.

min ) . w;z;
stY = f(xy...,xp)

The solution of this program is a set of factor demands (z7} (wy, ..., w,, YY), ...

and, from this we can find the cost function C' (Y, wy, ..., w,,) = >, w;x} which
gives the minimal cost to produce a given quantity Y.
Form, this we can compute the unit cost: ¢ = %, and the marginal cost:
Cm = %
oY
The primal program described above can thus be rewritten as:

max PY — C (Y, wy, ..., wy,)
The first order condition of this program is:

oC
o~ F

Namely, the marginal cost is equal to the market price of the product.

22
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2.2 Leontief
The production technology is such that: ¥ = min {%}

Factor demands

s.t.Y = min {%}

This optimization program can also be written:

s.t.g; <0,V
With g, =Y — %,

Qg

L= Zwlxmtz}\ (Y——)

6@» a;

The complementarity slackness conditions are:

min {\;, g;} = 0,Vi
Consequently:

wl>0:>gZ:O,Vz

= ;= q;Y

Cost functions

:Zaiwi
P=Cm= Zaiwi
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2.3 Cobb-Douglas
The production technology is such that: Y = A[[, 2z, with A and o

7 )
paramters, and ) . o, = 1.

Factor demands

stY = A, "

ﬁszixi—)\ (Afo‘ —Y)




We can thus rewrite the demand function of production factors:

OKZPY
€T; =
W
Furthermore:
C =PY
and
c=Cm=P
2.4 CES

The production technology is such that: ¥ = A (ZZ aiwg_

and o, parameters, and ), a; = 1.

Factor demands

1

stY =A <Zz aim;_%> 7

el

o—1

Eszixi—)\ A(Zaix:;l> -Y

1

oL 1 oo\ 77
oz, 0=w; — X | Aoz, (Z T, )
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Cost functions

v fe
C = sz% =1 <Z a?w}‘”)

We can thus rewrite the demand function of production factors:

T = a;’A"’l (£> Y

W;
Furthermore:
C=PY

and

c=Cm=P

2.5 CET

o

o+1

The production technology is such that: ¥ = A (ZZ T, > UTl, with A and

«; parameters, and ) . a; = 1.
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Factor demands

min ) . w;z;
o4l 557
stY =A (Z@ oGx;° )

o _

Eszimi—)\ A (Zazx:‘tl> - -Y

Cost functions

Y -0, 140 "
C’:Zwixizz Zaj w;

J

C 1 -0, 140 o
J
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1 e
_ _ —0o,, 140
P=Cm= 1 Z o fw;
J
We can thus rewrite the demand function of production factors:

x; = a;o'Afafl (%)0’ v

P
Furthermore:
C =PY
and
c=Cm=P
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